Research in Computational Astrobiology
Final Technical Report for Contract NCC2-5389

Silvano Colombano®, Greg Laughlin®,
Andrew Pohorille®?, and Michael A. Wilson®%*

*MS 230-3, NASA Ames Research Center, Moffett Field, CA 94035

PUCO/Lick Observatory, University of California, Santa Cruz, 95064

*MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035

YDept. Pharmaceutical Chemistry, University of California, San Francisco, 94143

“Principal Investigator
Period of Performance: July 1, 2000 — June 30, 2001

Inventions: There are no patents or inventions arising from this research project.

Abstract

We have pursued several projects in the new field of computational astrobiology, which is
devoted to advancing our understanding of the origin, evolution and distribution of life in
the Universe using theoretical and computational tools. We have developed an algorithm for
calculating long-range effects in molecular dynamics using a multipole expansion of the elec-
trostatic potential. This algorithm is expected to be highly efficient for simulating biological
systems on massively parallel supercomputers. Work has been done to establish the NASA
Resource in Bioinformatics. This resource will support studies on the origins and evolution
of life, and space genomics (including the effects of gravity on gene expression). In order to
understand better the self-organization of organic matter in the earliest cells, and its evo-
lution, we will develop models of protobiological chemistry using neural networks. Finally,
we have performed simulations of three planet systems to investigate models of planetary
system formation that might account for recently discovered extrasolar planetary systems.

Introduction

The goal of this research was to pursue research in computational astrobiology through a
series of projects which address several issues identified in the recent NASA Astrobiology
Roadmap. Computational Astrobiology uses computational and theoretical techniques to
advance our understanding of the origin, evolution and distribution of life in the Universe.
Computational astrobiology approaches these problems from several different points of view
simultaneously, ranging from the molecular and cellular level to the ecological and biosphere
level. This requires exploiting information from not only the biological sciences, but also
chemistry, geology, paleontology, and planetary and atmospheric sciences. Similarly, the

1

goals of computational astrobiology cannot be accomplished using a single area of computer
science but, instead, involve creative integration of several traditionally separate disciplines:
biomodeling and biosimulations, bioinformatics, and complex systems science. This is ex-
actly the approach taken in this proposal. Below we describe several projects that were
carried out by several undergraduate and graduate students in collaboration with scientists

at NASA Ames.

Long-range Effects in Molecular Dynamics. To assist Ames’ efforts in developing
the fastest code for molecular-level simulation of biological systems on massively parallel
supercomputers, we have developed a modified, highly efficient, state-of-the-art, multipole
expansion code to treat long range effects in molecular dynamics. The newly developed code
will be applied to the study of two outstanding problems in astrobiology: (i) understanding
the structure and mechanism of action of the first proteins evolved from random sequences
by in vitro selection; and (ii) designing simple membrane proteins capable of transporting
material across cell walls, utilizing energy captured from the environment and transmitting
signals from the environment into the prebiotic cell. This work will truly advance both
the state-of-the-art of research in astrobiology and the connection between astrobiology and
information technology at Ames.

Establishing NASA Resource in Bioinformatics. We have helped establish a bioinfor-
matics infrastructure at Ames in order to support current and future biological research at
NASA. Such research includes studies on the origins and evolution of life, and space genomics
(including the effects of gravity on gene expression). It will provide a mechanism for NASA
researchers and their collaborators to integrate NASA proprietary genomic data with other,
rapidly growing databases, and to organize, view and analyze these data in a way that is
specific to individual research goals.

NASA’s interests in bioinformatics center around questions regarding how critical cellular
functions evolved, were selected for, and respond to conditions in space. This will help, for
example, to identify minimum requirements for life, which can be further used as a criterion
in the search for life on other planets. Another important research goal is to explain how
genes are regulated and respond to the absence of gravity. Bioinformatics related research
and infrastructure are essential to Astrobiology, Fundamental Biology and Space Genetics
Programs at NASA. It will also be an inherent component of analysis of data from all future
biology-oriented NASA missions. Thus, the formation of the Bioinformatics Resource is
critical for the success of these programs and missions.

We have assisted Ames in establishing core competency in bioinformatics by obtaining,
testing, and deploying analysis and database software for use by NASA researchers. Some of
the software programs required are: CLUSTALW (multiple alignment), Phylip (phylogenetic
analysis), SAM, Hmmer, HmmPro (Hidden Markov model building and analysis), MEME,
Mast (motif search), BLAST2, WU-BLAST (homology detection), Modeller (homology mod-
eling), Rasmol (molecular visualization), and various analysis software developed in house.
Access to the software will be web-based through a secure server on a centralized computer
system. This would set the foundation for a NASA repository of biological information,

which could be integrated with already available public data.

Protobiological Chemistries using MolNets. In general, artificial neural networks can
be viewed as structures that perform specific functions. Given any particular topology and
connection weights, input signals will be transformed into specific output signals. This input-
output relationship is the “function”’ performed by the neural structure and is uniquely
determined by this structure and by the input (environment).

For our purposes, the traditional neural network idea will be modified as follows: inputs
to the network will not be simply transformed into output signals but will be also utilized to
modify the topology of the network. The rules for these transformations and modifications
are very simple and constitute the "physics” of the system. The essence of this model is
that the networks are placed in a spatial dimension, come into contact with one another
and modify their structures as a result of these interactions. They act like like molecules in
a pseudo-chemical soup, hence the name ”"MolNets” e.g. MolNets A and B can meet and

produce MolNets C and D.

Dynamical Interactions within Three-Planet Systems. The number of habitable
planets in the galaxy is a quantity of fundamental astrobiological interest. In the past five
years, over 80 extrasolar planets have been detected, which are presenting us with some
major surprises. In particualr, none of the planetary systems discovered thus far bears much
resemblance to our own Solar System. In some cases, we are finding Jupiter-mass planets
at very small distances from the parent star. In other cases, we are finding massive planets
with very eccentric orbits, in stark contrast to the near-circular orbits of the major planets
in our system.

We have performed a large-scale set of calculations geared toward answering the question:
Is it possible that the currently observed census of eccentric, short-period Jupiter-mass plan-
ets arises from catastrophic gravitational interactions among a parent population of young
Jupitermass planets which formed in circular orbits at distances greater than five astronom-
ical units from the parent star? If so, the present model for planetary system formation can
easily incorporate the diverse population of planets now known.

Results

1 Long-range Effects in Molecular Dynamics

(This project was carried out by Kevin Lin, a graduate student in mathematics from U.C.

Berkeley with Andrew Pohorille and Michael Wilson)

Implementation of the Fast Multipole Method
Kevin K. Lin
kkylin@math.berkeley.edu

Abstract

3

The aim of this document is to record most of the nitty-gritty details of my implemen-
tation of the adaptive fast multipole method: Everything from the overall structure
to specific recurrence relations, as well as obvious deficiencies and fundamental limita-
tions.

1.1 Introduction

This article describes my implementation of the fast multipole method (FMM) during the
summer of 2000.! A quick description of the adaptive fast multipole method and modifi-
cations necessary for periodic boundary conditions is followed by a detailed discussion of
the internals of the source code: Representations of data structures as Fortran 77 arrays,
obvious inefficiencies, and fundamental limitations of these algorithms. This article should
serve two purposes: First, to review the basic principles of the fast multipole method and
to send interested readers to appropriate references, and second, to document the nuts and
bolts of my Fortran implementation. This is only a draft, so it is bound to be incomplete
and I welcome all comments, questions, and suggestions.

A note on the source code. The souce code is basically written in plain-vanilla Fortran
77, although some parts rely heavily on SGI Fortran extensions.? The code was deliberately
written to mimic the mathematics and thus may seem intentionally slow in some ways. Most
of these inefficiencies, however, do not involve fundamental data structures and are, I hope,
easy to spot and modify.

1.1.1 Key references

The overall structure of the program follows Cheng, Greengard, and Rokhlin (Cheng et al.,
1999) very closely. In particular, interested readers who have not done so should take a look
at the pseudocode in §4 of (Cheng et al., 1999), which gives a very careful description of
the adaptive fast multipole method.> The mechanism for computing forces with periodic
boundary conditions follows Challacombe et. al. (Challacombe et al., 1997): My code
reproduces their results, but as far as [know their calculations have not been independently
verified with Ewald or direct summation methods. There are mistakes in (Challacombe
et al., 1997), by the way: See Section 1.3 for details.

1This work was done as part of an internship at the Center for Computational Astrobiology at NASA’s
Ames Research Center.

?In particular, the program fmm_ndw relies heavily on extensions for quadruple precision arithmetic.
(fmm_ndw computes lattice interaction matrices for the periodic FMM.)

30ne major difference is that my implementation uses recurrence-based translation operators (discussed
in (Lin, 2000)), which require a two-box separation for multipole-to-local translations. In contrast, Cheng
et. al. require only a separation of one box. This affects the definitions of neighbor lists.

1.1.2 Notation
The notation in this article follows (Lin, 2000) and (White and Head-Gordon, 1994):

Throughout, 7, k,[,m are reserved as indices of multipole or local expansions, and p is the
order of the expansion. O;,, always refers to the multipole coefficient for a single charge of
+1, whereas O, always refers to the multipole coefficient for a system of charges. Similarly,

M ., refer to local coeflicients for a single charge, whereas Ml,m refer to a system of charges.

1.1.3 Document organization

Section 1.2 reviews the basic structure of the adaptive FMM and discusses differences be-
tween my implementation and that of (Cheng et al., 1999). It also brings to light some of the
rationale behind the algorithm and points out common pitfalls. Section 1.3 then discusses
modifications necessary to use periodic boundary conditions efficiently. Section 1.4 covers
the exact recurrence relations employed by the program to build tables of multipole and lo-
cal expansions, as well as the details of how the translation operators are implemented, and
Section 1.5 describes the detailed implementation of the FMM. Finally, Section 1.6 offers
some suggestions on optimization, and Section 1.7 points out some fundamental (and some
not-so-fundamental) limitations of the code.

Before proceeding, the reader may wish to consult (Lin, 2000) for a description of mul-
tipole and local expansions and the translation operators used to manipulate them. (What
follows assumes familiarity with that material.)

1.2 The Adaptive FMM: Basic Structure

[implemented a variant of Cheng, Greengard, and Rokhlin’s adaptive fast multipole method
(Cheng et al., 1999). The code is somewhat complicated because of the need to keep track
of different types of neighboring boxes, but the presentation in (Cheng et al., 1999) is quite
good. Below, the adaptive algorithm is reviewed, and interested readers are referred to §4 of
(Cheng et al., 1999) for a more detailed discussion. Also, this discussion assumes familiarity
with the basics of multipole and local expansions and their translation operators (see (Lin,
2000)). Throughout the discussion, I will make references to important parameters in the
code, but a detailed discussion of the program itself is deferred until Section 1.5.

The fast multipole method begins by forming a box around the entire system of charges,
then forming equal octants and distributing particles into each octant. This process is
repeated for maxlevel —1 times, until the smallest boxes have sides that are 2maxtevel=1 that
of the largest box, where maxlevel is the maximum allowable depth of the tree. This process
defines an octree. The non-adaptive multipole method defines a full octree: Each level of
the tree has 8'°*'~! boxes (this means the tree contains a total of £(8*¢¥** — 1) boxes). The
largest box occupies level 1 by itself, and boxes in increasing levels are smaller in size and
farther down the tree.* The adaptive method, in contrast, only divides a box into octants

41 know it’s confusing to have increasing level correspond to decreasing size, but it’s stuck. Sorry about
that.

. Phaselll
... ;‘ L
- * .
Level n w o te et
- - -
- .
. * »
-
- -
A I T
W .." '
Level n+1 -
* -
- .
+* ¥ »
L]
- -
| 8| e T
Wl Tl .
Level n+2 s
- -
- * *
Y L. -
..
* -
Phasell

Figure 1: Adaptive construction of child boxes: This shows three levels of the tree. Note
that this is a two dimensional system (but the three dimensional case is similar).

if the number of particles in that box exceeds a certain fixed number. This helps balance
the number of particles per childless box and avoids wasting time on boxes which are nearly
empty. As usual, if b denotes a box and bc denotes one of its octants, then b is bc’s parent
and bc is one of b’s children. Boxes without children are said to bechildless and corresponds
to the tree’s “leaves.” Every box that is not childless has eight children.

Here is a very vague description of the fast multipole method:

Phase I: Load particles and build tree structure.

Phase II (bottom-up): Build multipole expansions for childless boxes, then propagate
multipole expansions up the tree using multipole-to-multipole translation operators.
This constructs multipole expansions for all boxes, which determines far-field forces
generated by charges in each box.”

Phase ITI (top-down): Starting at the “top,”® for each pair of “sufficiently distant” boxes
b and bb, construct a local expansion about the center of b for the field generated by
bb by applying the multipole-to-local translation operator to the multipole expansion
of bb. This local expansion can then be translated and propagated to b’s children.

51 will often write “forces generated by a box” when the more precise statement is “forces generated by
charges in a box.”

SFor technical reasons, explained below, “top” can mean either level 1 or level 3, depending on whether
one enforces periodic boundary conditions or not.

This recursively exchanges far-field effects between distant boxes, if the “sufficiently
distant” boxes are defined correctly. For the adaptive method, each box also needs to
evaluate the field generated by nearby large boxes.

Phase IV (evaluate forces): For each childless box, interact directly with nearest neigh-
bors and evaluate local expansion to obtain forces on each charge. In the adaptive
case, this stage should also make sure that forces generated by nearby small boxes are
accounted for.

1.2.1 Phase I: Build tree structure

This section describes the implementation of the particle-loading phase:

Step 1: Load particles. Beginning with level 1 and going to the maximum level allowed
(maxlevel), iteratively distribute particles into boxes. A given box b is divided into
octants only if the number of particles in b exceeds a fixed limit, maxcount. (A simple
running time analysis shows that, for optimal speed, maxcount should be proporta-

tional to p*/2. The constant of proportionality is best found by experimentation.)

Step 2: Build neighbor lists. Every box has five lists (labeled 0 through 4) associated
with it. These lists contain indices of nearby boxes for computing electrostatic in-
teractions. Defining these lists can be somewhat complicated and is done in detail
later. For now, it is only necessary to note that three of these lists (Lists 1, 3, and 4)
contain nearby boxes that are too close for multipole-to-local conversion to converge
quickly, and List 2 contains boxes that are just far enough away that multipole-to-local
conversion works really well.

Step 3 (optional): Balance tree. For some particle distributions, the simple tree con-
struction described above may result in suboptimal divisions: Boxes with just a few
more particles than maxcount may get divided, for example, which results in child
boxes that have too few particles. It may be useful to go through the tree and “prune”
away childless boxes with too few particles, though the best way to do this is far from
obvious.

1.2.2 Phase II
This section describes the “bottom-up” phase (see Figure 1.2):

Step 1: Construct multipole expansions. For each childless box, build the pth-order
multipole expansion for the field it generates. (This is done using recurrence relations,
described in Section 1.4.)

Step 2: Propagate multipole expansions. Shift the centers of multipole coefficents
from each child box to its parent’s center and sum. This uses the multipole-to-multipole
translation operator discussed in (Lin, 2000) and constructs a multipole expansion for
the field generated by all charges contained in the parent box.

Comment: In the non-periodic case, boxes at levels 1 and 2 do not have well-separated
neighbors, so multipole expansions are not useful for boxes at those levels (see below)
and the iteration above can stop at level 3. In the periodic case, however, level 2 boxes
can interact with well-separated images of neighboring boxes, and the multipole expan-
sion for the largest (level 1) box is needed for contraction with the “lattice interaction
tensor” (see below). So, for the periodic FMM, the loop needs to go up to level 1.

This comment applies to the propagation of local expansions as well.

1.2.3 Phase III

This section describes the “top-down” phase (again, see Figure 1.2):

Step 1: Propagate local coefficients. Starting at level 3 for non-periodic FMM and level
1 for periodic FMM (see previous section for rationale) and going down: For each box
b, use the multipole-to-local translation operator to convert multipole expansions from
all well-separated boxes (List2(b)) into a local expansion about the center of b. Then,
if b is not childless, shift the local expansion in b to the centers of each child of b. This
passes far-field effects from distant boxes to b’s children.

Step 2: Nearby large boxes In the adaptive case, some boxes may be too close to use the
multipole-to-local translation operator. These boxes are collected in List 4 (defined
below). For each such box, one can do a case analysis: If bb is in List4(b), for
example, and bb contains more than p? particles, then we can simply construct the
local expansion for the field generated by charges in bb about the center of b and sum
this expansion with the far-field effects computed in step 1. In fact, this step may be
combined with the previous step.

Otherwise, just compute forces directly because that would be faster. (See the discus-

sion in (Cheng et al., 1999).)
This is a good time to define some terms and talk about various neighbor lists.

Well-separated boxes The main difference between this code and that of Cheng ef. al.
is the definition of well-separated neighbors: While they can accurately perform multipole-
to-local conversion for boxes that only have a one-box separation, our translation operator
requires a two-box separation. As a result, my list definitions differ from theirs.

First, some terminology: Two boxes are neighbors if they share a boundary point, and
are colleagues if they are neighbors and are the same size (that is, if they are on the same
level). They are second colleagues if they share a colleague, and well-separated if they occupy
the same level and are not second colleagues. Note that every box is its own colleague and
neighbor, and every colleague is also a second colleague. (To avoid confusion, the term
“second neighbor” will be left undefined and unused.)

Neighbor lists Every box b has the following lists (note that List 0 is only used to define
and construct other lists):

List 0: A box bb is in List0(b) if and only if it satisfies level(bb) < level(b) and is
a childless neighbor of b or a childless second colleague of b. Note that if bb is in
List0(Db), then it necessarily occupies a lower level and is hence larger than b. This
makes the list fairly easy to build, and it is very useful for defining and building other
lists.

List 1: A box bbis in List1(b) if bb is either a childless neighbor of b or a childless second
colleague of b. Particles in these boxes interact directly. Note that bb is in List1(b)
if and only if either bb is in List0(b) or b is in List0(bb).

List 2: A box bbisin List2(b) if bb’s parent is a first or second colleague of b’s parent and
b and bb are not themselves first or second colleagues (i.e. they are well-separated).
These boxes interact by multipole-to-local conversion.

List 3: bbis in List3(b) if and only if b is in List0(Parent (bb)) but not in List0(bb).
In other words, bb is in List3(b) if and only if bb is strictly smaller than b and is near
b but not adjacent to it. Thus the multipole expansion generated by bb converges in
b, and it can be safely evaluated. (But see Phase IV notes, below.)

This list is useless (and hence undefined) if b is not childless.

List 4: A boxbbisinList4(b) ifand onlyifbisinList3(bb). List4(b) may be nonempty
for boxes b that have children, but its elements are all childless. If bb is in List4(b),
then bb is a larger, non-adjacent nearby box, making evaluation of local expansion
possible.

Figure 1.2.3 illustrates some of these neighbor lists.

1.2.4 Phase IV

There is now enough information to compute the force acting on each particle, as follows:

Step 1: Direct interaction Let b be a childless box. For each box bb in List1(b) (which
includes b itself), compute the forces resulting from direct interactions between the
charges in b and those in bb. Do this for nearly-empty (that is, containing fewer than
p* particles) boxes in Lists 3 and 4 as well.

Step 2: Evaluate multipole expansions Let b denote a childless box again. For each
box bb in List3(b) containing more than p? charges, evaluate the force acting on
each charge in b using the multipole expansion of bb. (This is less work than direct
interaction.)

Note that one may be tempted to use the multipole-to-local translation operator here
to reduce the amount of work. But a closer error analysis (relevant theorems are found
in (Cheng et al., 1999)) reveals that such expansions are not guaranteed to converge,
and in practice this strategy can produce numerical instabilities.

|
2—|2—2 2
I R T) .
| 33
, 1-?-333
e HE
4
311) 1
2 R
4 1
1
4 4

Figure 2: This figure illustrates the neighbors of box b. All boxes shown should be childless.

Step 3: Evaluate local expansions Each childless box b should have a local expansion
of all far-field effects (computed recursively via List 2), as well as effects produced by
large boxes nearby (through List 4 in the previous phase). Evaluate this expansion at
each charge in b.

1.3 Periodic Boundary Conditions

My implementation of the periodic FMM follows Challacombe, White, and Head-Gordon
exactly (Challacombe et al., 1997). This approach allows only cubic cells, which may be
a serious limitation for some calculations, but it is very efficient and relatively easy to
implement.

First, some terminology: The (level 1) box containing all charges in a given simulation is
known as the simulation cell, and we can think of periodic boundary conditions as specifying
an infinite lattice of copies of this cell. Periodic copies are called image cells and exert an
influence on charges in the simulation cell.

The periodic FMM is based on the following observation: Let {(g;,r;)} denote a system
of N charges, let rq denote the center of the simulation cell, and let OALm denote the multipole
coefficients of the potential that these charges generate. Then, the electrostatic potential
with periodic boundary conditions is given by

4q; o
Zn:zi:|r—ri—|—n|_ (1)
Y X520 St [Ot (X = 10) X520 ey Mygipim (n) - Oy

10

where the multipole-to-local translation operator (see (Lin, 2000)) was used to convert the
multipole coefficients OALm generated by charges in the simulation cell into a local expansion
of the field generated by image charges in image cells on the infinite periodic lattice.

Note that, as in the case of the non-periodic FMM, the multipole-to-local translation
operator requires that cells be “well-separated” for convergence. Unlike the case for boxes,
however, it turns out that a separation of one cell is sufficient in this case. Thus, the sum in
Equation 1 actually only involves indices n = (nq, n2, ng) for which max(|ny|, |n2l, |ns|) > 1,
and neighboring image cells must interact “directly.” (This is discussed below.) Challa-
combe, White, and Head-Gordon then go on provide a fast Ewald-like method for computing

the coeflicients
Z Ml,m(n)v (2)

which T call the lattice interaction matriz.

This method can only handle cubic simulation cells. If the simulation requires adjust-
ing cell dimensions dynamically, these adjustments must be uniform, so that the lattice
interaction matrix can be scaled appropriately.

1.3.1 Modifications for periodic boundary calculations

The modificiations required are modest: First, the code needs to propagate multipole coeffi-
cients all the way up to level 1 (instead of only up to level 3), so that the multipole expansion
for the entire simulation cell is obtained. (See Figure 3.) Next, this is contracted with a
pre-computed lattice interaction matrix (see below) to generate an effective local expansion
for image cell interactions. This can simply be propagated downwards and summed to local
expansions from intra-simulation-cell far-field forces for smaller boxes in the simulation cell.

The slightly messy part involves neighboring image cells: As these cannot be included in
the lattice interaction matrix, charges in the simulation cell need to interact “directly” with
those in neighboring image boxes. This can be done by extending data structures so that
boxes in neighboring image cells can be put into List0 or List2 (and hence into List1,
List3, or List4) as if they are boxes in the simulation cell, with extended data structures
that tag these image cells as such (so that translations and force evaluations are performed
with appropriate shifts inserted).

1.3.2 Lattice interaction matrix

The following formulae, taken from (Challacombe et al., 1997), lets one compute the lattice
interaction matrix efficiently:

Z Ml,m(n) — Al,m + Bl,m (3)

A = YN Y (- m)P(B) - €7 Gi(Bn) (4)

|n1|>1 |712|>1 |n3|>1
ilﬂl—l/Z

B = -2 _—n?n2/3? (] — 1. p . 911 tm¢n
I 7“[12 zﬂ:n e (I —m)).m (COs Oy) e

11

2 2 2 2 2 2
.. ° o. ° .. °
2
[X J [X J o0 [X J o0 o0
[(1] ° (14 [(1]
2
% L4 % . % L4
b 2
(X4 (3 [X (3 d L X [XJ
° (1] [] (1] ° o0
2
.. ° o. ° .. °
2
[X J [X J o0 [X J o0 o0
[(1] ° (14 [(1]

Figure 3: The simulation cell with neighboring (not well-separated) image cells: Periodic
copies of the simulation cell are shaded, while the simulation cell and its charges are in solid
black.. As the cells themselves are not well-separated, charges in these cells must interact
at a lower level. Here, a box b is marked, along with images boxes that are well-separated
from it. Box b is not intended to be childless, so its List 1 is (in constrast to Figure 1.2.3)
undefined. Image cells not shown here contribute to the lattice interaction matrix.

Gl(ﬁvn) =
Fy(B,n) = 1-Gi(B,n) (7)

I(a+1,) = al(a,b)+be™® (8)

I(1/2,b) = +/merfc(v/b) (9)

Note that Equations 5 and 9, as they appear in (Challacombe et al., 1997), are in error: (5)
appears twice in the paper but is incorrect as Equation 17 of that paper and is correct in
Equation A13, while (9) appeared with z instead of /z. The function I'(a) = [;° t*~te~!dt is
the usual Gamma function, and I'(a,b) = [t*~'e~'dt is the complement of the incomplete
Gamma function y(a,b) = [Pt te~tdt. (erfc(z) = 1 — erf(x) is the complement of the usual
error function erf(x).) In the above, 3 is a convergence factor and is usually set to /7 for
optimal convergence rate.

I was not able to arrange the order of the computation so that the output of my program
agrees with the lattice interaction matrix in (Challacombe et al., 1997). So, I took the
brute-force approach: The program fmm ndw computes the lattice interaction matrix using
quadruple precision arithmetic. This relies on SGI Fortran’s real*16 and complex*32 data

12

types and associated intrinsic functions, and the program may not be portable. But, it works
on at least one Silicon Graphics workstation. The program is fairly straightforward, with
one little catch: To prevent loss of precision due to summing numbers with wildly different
magnitudes, all the summands are computed first and sorted in ascending order before being
summed.

1.4 Recurrence Relations: Details

This section documents facts about the internal representation and manipulation of multipole
/ local expansions.

1.4.1 Tables and index maps

Tables of multipole As noted in (Lin, 2000), multipole coefficients OALm satisfy

Ol = (=1)™ - O, (10

~—

where overline denotes complex conjugation. Thus, we need only store OALm for 0 <m <
[< p, which are always stored in double precision complex arrays (complex*16 arrays) in
Fortran 77.

This presents a minor problem: The straightforward way to store OALm for p = 10, for
example, is to simply declare a doubly-indexed array A of dimension (11,11). As memory is
an issue on workstations, however, I opted to declare a linear complex array, say A, of size
ﬁwg@, and use a separate doubly-indexed integer array, usually called ind, whose indices
range from 0 to p and contains appropriate indices into A. This works fairly well, but may
not be as fast as possible. A parallel / optimized version of the code should probably remove
this extra level of indirection, but any competent programmer can do that: There are many
changes to be made, but they are all minor.

1.4.2 Recurrence relations for multipole expansions

This section contains the specific strategy used to compute multipole expansions, given an
expansion center ro and a charge at ry.

Let Ar = r; — rg, and write Ar in spherical coordinates as (p, 8, ¢).” Tables of multipole
coefficients O, ,, = O ,,(Ar) are then computed as follows:

1. First, set Ogp =1 and Oy 9 = dz = pcos .

2. Next, compute O;; = ﬁpl e~ . sin! § iteratively for [=1,...,p.

3. Now that we have O; o and Oy;,[=0,...,p, we can compute O for 2 <[< p using

20 — 1 2
Ot = =5 " PCOS 0-01_1m — P

e = Opam (11)

2—m
with m = 0.

“To be absolutely pedantic: Ar = (psinf cos ¢, psin @ sin ¢, pcosf).

13

4. Form=1,...,p—1:

(a) If sin@ > | cos 8|, then use
et

. (=92. 00t me O 12
(2m +1)sin @ (€080 Omtim=1 47 - Omom—i) (12)

Om+1,m =

to compute O 41,m. We would then have O, ., (from Step 2) and O,,41,, from
this step.

(b) Else, if sin @ < |cos 8|, then use

Om—}—l,m - _(m —I' 1) tan 9 . e+i¢) Om—l—l,m—}—l ‘I’
tan @ : m 4+ 1 p
LeT .0 . e
2m + 1 © mlm=1 T o, +1 cosf ™™

to compute O, 41,m. Again, we would have O, ,, (from Step 2) and O,,41,, from
this step.

5. Having computed O,, ,,, and O,, 41, we can then use

20 -1 p*
O = TR ~pcos - Oy, — [Oi—am (13)
to compute Opy2,m, - - -, Op.m, and repeat the process.

1.4.3 Recurrence relations for local expansions

Again, let Ar = ry—rg and Ar = (p, 8, ¢) in spherical coordinates. Tables of local coefficients
M, . = M ,,,(Ar) are then computed as follows:

1. First, set Moo = 1/p and My = cos8/p*.

2. Next, compute M;; = (2;;11)” - € . sin' @ iteratively for [=1,...,p.

3. Now that we have M; g and M;;,[=0,...,p, we can compute M;q for 2 <[< p using

20 — 1) cos @ 2 —m?
My, = BTty
p p

' Ml—?,m (14)

with m = 0.
4. Form=1,...,p—1:

(a) If sin@ > | cos @], then use

sin

ip 92
Mm—l—l,m - e ' (_ cos § - Mm—}—l,m—l + 7m ' Mm,m—l) (15)

to compute M, 41,,. We would then have M,, ,,, (from Step 2) and M,,41,, from
this step.

14

(b) Else, if sinf < |cos 6|, then use

1 :
Mm—l—l,m = —atane . €_Z¢ . Mm—}—l,m—}—l + (16)

1

. 1
5 tand - €Z¢ . Mm—|—1,m—1 + m

p cos b .

m,m

to compute My, 41.,. Again, we would have M,, ,, (from Step 2) and O,,41,, from
this step.

5. Having computed M,, ,, and M,, 41 ,,,, we can then use

2l — 1) cos ¥ [—m?
M., = —() My — s Mi_om (17)
p p
to compute My 42.m, ..., M, ., and repeat the process.

1.4.4 Computing gradients

The recurrence relations above can be used to compute multipole coefficients OALm =
i ¢ Orm(ri — o) and My, = 3, Gi - My (r; — ro) for clusters of charges {(¢;,r;)}. The

corresponding electrostatic potential U is given by

00 I

Ur) = ; E_le,mOZ,m@—ro) (18)

o0

{
E E M17m(r—r0)017m.

=0 m=-1
To compute the gradient VU(r), one needs to instead compute

00 {

VU(r) = ; Z:_IMZ,mVOl,m(r_rO) (19)

00 {

Z E VMLm(I' — I‘O)OALm.

(=0 m=—{

The coefficients VO, ,,, and VM, ,, can be computed by differentiating the recurrence rela-
tions from the previous sections with respect to r, 8, and ¢, and then converting the gradient
from spherical to cartesian coordinates. This is a straightforward calculus exercise and is
omitted here.

Numerical stability It is possible to arrange the recurrence relation in Steps 3 and 5 in
both multipole and local computations above to make it numerically stable.(Arfken, 1985)
This was not done and the numerical stability of the other recurrence relations have not been
checked. Empirically, this does not cause problems with uniform distributions of particles,
but perhaps someone better versed in numerical analysis than I should check the numerical
stability of these recurrence relations and rearrange the computation.

15

1.4.5 Faster translation operators

The translation operators in this code follow (Lin, 2000), which are simple O(p*) algorithms.
Please look there for an explanation of recurrence-based translation operators.

Multipole-to-multipole translation The multipole-to-multipole translation operator re-
quires three auxiliary arrays. This is because, in the notation of (Lin, 2000), it requires the
partial sums Rio, R{J, and Ril_l for [=0,...,p. Each of these arrays have O(p*) elements
and require O(p) operations per element to compute. It is then straightforward (again, see
(Lin, 2000)) to use these elements to compute all the partial sums Rj,, and sum them over
J to get the translated multipole coefficients.

Note that the code actually loops over j on the outside loop, so for each j we have [
running from j to p: This enforces the constraint that Rim exists only for j <.

Local-to-local translation Unlike the multipole-to-multipole operator, the local-to-local
operator only requires one auxiliary array. This is because, by definition, we have 57, =

M; ., for m = 0,...,p, so we can just pull that from the original array rather than having to
store it. The only partial sums we need to compute to start the recurrence relations, then,
areSl];Ofor()glgjgp.

Again, the code reorders the sum by looping over j on the outer loop, then lets [run
from 5 — 1 down to 1: This ensures that [< j holds.

Multipole-to-local translation As mentioned in (Lin, 2000), the multipole-to-local trans-
lation operator uses recurrence relations with sin# in the denominator, which can cause
problems when sin @ = 0. But in such cases, § = 0 or § = 7 holds, so that we would be
translating coefficients along the z-axis. So, the code starts by checking if sin# = 0 holds,
and if it does, to simply use the O(p?) algorithm for vertical translations (see (White and
Head-Gordon, 1996)). Otherwise, it uses the recurrence based algorithm described in (Lin,
2000).

The computation of translated local coefficients from partial sums Tl{m requires two auxil-
iary arrays: They must hold Tl{o and TZ{I for 3,0 =0,...,p. The code is fairly straightforward.

The code to compute the vertical translation operator is also straightforward, but it tries
to compute various constants involving factorials and powers of —1 iteratively, so it may
look a bit confusing at first.

Numerical stability In numerical tests with uniformly distributed charges, the recurrences
have appeared numerically stable for N ~ 1000 and p &~ 40. No rigorous stability proof has
been done, but a good numerical analyst should be able to figure this out.

Array bound checking As mentioned in (Lin, 2000), the recurrences for Rim (used in

multipole-to-multipole translation) and for Sim (used in local-to-local translation) actually
refer to multipole coefficients Oy . for which |m’| > I', which are 0 by definition. The code
calls a procedure to ensure that this happens, which is robust and easier to read, but slow.

16

An optimized code should unroll the loops to only sum over nonzero multipole coefficients.

Matrix element caching All translation operators currently incur a O(p?) overhead by
calling constructors for multipole or local coefficients, to construct the Oy ,,(Ar) or M;,,(Ar)
coefficients necessary for performing the translation. But, by its very nature, the multipole
algorithm actually does translations along the same directions very often. It is therefore
possible to rearrange the computation so that these matrix elements are not recomputed.
This has not been done, and may not be easy to do because of the data structures used to
store neighbor lists and the way the multipole calculation is organized, but anyone wishing
to use this code effectively should beware this not-so-hidden extra cost.®

1.5 FMM: Detalils

1.5.1 Data structures

Neighbor lists are implemented as singly-linked lists. As Fortran 77 does not provide pointers
or dynamical memory allocation, this must be simulated using Fortran arrays, following Cor-
men, Leiserson, and Rivest (Cormen et al., 1990): A large integer array A is first allocated,?
with dimension (2,11size), where 11size is a large integral constant. For each entry in
the array, the entry A(1,1) holds the datum (usually a pointer to a box — see below) and
A(2,1) holds a pointer to the next entry of A in the linked list. Or, it may hold a predefined
constant, null, if it is the last cell in the list.'°

Similarly, it is useful to have “objects,” which in my code is implemented by having
separate arrays represent different data fields for a large list of objects of the same type.
(See (Cormen et al., 1990).)

Very large arrays are allocated so that there is enough space for each box in a full tree
of some given depth maxlevel.! This is a waste of space, but easier to work with. Every
box has two kinds of labels, an index and a set of coordinates. An index is just an integer
pointer into these really big arrays that hold various fields of (simulated) data structures.
Coordinates are sets of four integers, (level,i,j,k), where level is the level the box
occupies, and 0 < 1,3,k < 2tevel=l _ 1 A simple function computes the index from the
coordinate; the inverse function is not needed because each box has fields to store its own
coordinates.

8T hope that the parallel version is sufficiently fast that this optimization is necessary, because it may not
be trivial to implement.

°In the code, for random reasons, this large array is called 137 instead. Sorry if this bothers you: Just
change it to 142 or whatever else strikes your fancy.

10For entirely arbitrary reasons, null is set to —123456789: A sufficiently large negative number that
attempts to use this as an array index should crash the program.

11 As the number of boxes in a full tree of depth maxlevel is %(— 1), the storage required grows
very quickly with maxlevel. Fortunately, in practical problems with N ~ 10%, maxlevel need not be much
larger than 5 or 6.

81evel

17

1.5.2 Correctness of list structure

It is not entirely obvious that the list definitions given before are entirely correct. One can
indeed attempt to construct a correctness proof for these lists, but such a pedantic exercise
is not very helpful: It can be every bit as convoluted as the list definitions themselves,
and in any case the ultimate test of correctness is whether these lists allow us to compute
electrostatic potentials and forces correctly or not, which they do.

1.6 Efficiency

There is lots of room for improvement in this area because the code was written to be slow.
Not just accidentally slow, but deliberately slow.

1.6.1 Array index maps

Just getting rid of index maps gets rid of a lot of memory references but introduces some
arithmetic operations. Whether or not this tradeoff speeds up the program significantly
depends on the architecture, available memory, and whether one rewrites all loops so that
inner loops access contiguous array entries: Just getting rid of indices without rewriting
loops to sum over inner loops first (as Fortran prefers) doesn’t improve performance very
much.

1.6.2 Data structures

I think these linked lists and stuff work very well and very quickly. What sucks about it
is that it makes exploiting symmetries to reuse translation matrices rather difficult. 1 do
not know of a good way around that, and I hope this is not a big issue for the parallelized
version.

1.6.3 Optimal parameters and tree balancing

The running time of the algorithm depends very sensitively on the depth of the tree and the
number of particles in childless boxes, which in turn depends very sensitively on the param-
eter maxcount. Following the analysis in (Cheng et al., 1999) and adjusting some constants
to reflect the running time of our algorithm, it looks like a O(p*?) scaling for maxcount is

3/2

about right. What constant factor to put in front of p*/“ is a matter of experimentation.

1.6.4 The cost of adaptivity

Adaptive code is actually fast: most of the time is spent doing translation operators. List
and tree construction, while complicated on paper, are a breeze for the program. Of course,
the adaptive code is much more complicated than non-adaptive code, and maybe the non-
adaptive code is easier to optimize. It depends on the application.

It was suggested ((Pohorille, n.d.)) that adaptivity should be an option: Maybe one can
construct the tree and use it in a multipole calculation using separate subroutines, so that

18

the tree need not be reconstructed at every time step. This may be nice, but, depending
on how parallel tree construction is done, it may not improve performance very much. The
code, as it stands, requires some work to make adaptivity optional.

1.6.5 Exploiting symmetry

See section on “data structures,” above.

1.7 Limits

There are some limits to what this code can do.

1.7.1 Memory allocation

Lots of big arrays are pre-allocated. Their sizes are fixed by constants. That is bad news on
a workstation, tolerable on large parallel machines with lots of real estate.

1.7.2 Numerical stability

Multipole and local coefficient construction, as well as translation operators, involve using

recurrence relations whose status as stable numerical algorithms is unknown (but knowable).
There’s also a little problem with the routines that convert the gradient from spherical

coordinates to cartesian coordinates: They do not check for division-by-zero errors.

1.7.3 Periodic boundary conditions

The periodic fast multipole method of Challacombe, White, and Head-Gordon (Challacombe
et al., 1997) is nice and fast, but limits what one can do in terms of changing the size of the
box during a computation: If the simulation cell is scaled uniformly, it is easy to figure out
how to rescale the effective interaction matrix accordingly. But, if there is a need to scale
each axis separately, as in constant pressure tensor calculations, then we (actually, you) are
out of luck.

2 Establishing a NASA Resource in Bioinformatics

(This project was carried out by Kate Parmer, an undergraduate student from U.C. San
Diego with Andrew Pohorille and Michael New)

One of the goals of the bioinformatics resource is to provide researchers with unique, and
custom tools to apply to public, or private genomic data, and one type of analysis critical
to understanding homology is a multiple alignment, whereby similar sequences are aligned,
and presented in a tabular format.

A multiple alignment is usually viewed manually, and features are noted by direct in-
spection. However, it is sometimes necessary to quantitate how good an alignment is. In
this case, a calculation of relative entropy on the individual columns can provide information

19

on how well conserved a particular region of an alignment is. This can provide insight into
important functional domains in proteins, such as enzyme active sites, and drug binding
sites.

A program was written to read in a multiple alignment, regularize the character proba-
bilities, and perform a relative entropy, and mutual information calculation. This involved
calculating the probability distributions for the individual columns of the alignment, perform-
ing Dirichlet regularization (in the case of protein sequences) or pseudocounts (for nucleic
acid sequences), and then performing the calculations on these "re-normalized” probability
distributions. This normalization is required since for alignments with only a few sequences,
some of the character probabilities in a column may be zero, due to under-representation of
that character in a particular column. In addition, mutual information between all columns
is calculated. This can give insight into correlation between columns in the alignment.

This work will be implemented on the NASA bioinformatics resource website in the near
future.

3 Protobiological Chemistries using MolNets

(This project was carried out by Kenneth Kang, an undergraduate student from Stanford
with Silvano Colombano)

MolNets provide a model protochemistry, which allows us to study models of chemical
evolution before the genome. They are neural networks which emulation molecular chemistry,
where the neurons are analogous to atoms and connections are analogous to chemical bonds.
MolNets can “react” with one another to form new structures. For prebiotic chemistry, we
can associate “atoms” with amino acids and “molecules” with proteins. The challenge is then
to devise rules and parameters that make physical sense without imposing a desired outcome
on the system. In particular, we want to allow for the possibility of emergent behavior.

At the present time, we have implemented a set of generalized, bond-centric rules to
generate artificial chemistry. We have implemented a common code for comparing, saving
and loading molecules. Reactions bond the reactants together, or bonds break and the
products are separated. The tools that we have developed to do this include a controlled
environment which examines each reaction and searches for metabolic reaction cycles. In
Figure 4a, we show the generalized reaction mechanism, and Figure 4b show a hypothetical
reaction cycle. Figure 5 shows a MolNet polymerization reaction. The reactant on the left
can react with itself to form a dimer. The reactant can be added to the dimer to form a
trimer, and so on indefinitely. In the MolNet artificial chemistry, 12 monomers with fewer
than 8 atoms were found.

Just like we see in the "inherited efficiencies” model, populations of MolNets can show
a shift towards larger average size and greater complexity of interaction. We believe that
they can represent an experimental substrate for studying the type of increasing complexity
that was a necessary precursor for the evolution of primitive organisms. Models of molecular
self-organization might also contribute to nanotechnology and production of new materials
and nanoscale sensors and devices.

20

a B*

Figure 4: (a) Generalized Reaction Mechanism. The dashed lines indicate bonds being
formed, the dotted lines indicate bonds being broken; (b) Hypothetical reaction cycle.

15

+H

-O
-25\ /75 o

+

Figure 5: MolNet polymerization reaction.

4 Worlds in Collision — Dynamical Interactions within
Three-Planet Systems

(This project was the work of Justin Lacy, an undergraduate student in Physics from George
Mason University, with Greg Laughlin and John Chambers)

The census of 80-odd extrasolar planets discovered thus far contains many objects with
highly eccentric orbits and/or small orbital radii. It is believed that this bizarre collection
of orbits has been produced by “dynamical” instabilities involving two or more planets
modifying each other’s orbits via their mutual gravitational pulls. The main thrust of Justin
Lacy’s summer project was to make a statistical examination of the kinds of dynamical
instabilities that occur within systems of three Jupiter-mass planets started on initially
circular orbits.

Justin performed several thousand integrations of model three-member which resemble
the Jupiter-Saturn-Uranus trio. Our own Solar System is extremely stable, due to the low
masses of Saturn and Uranus in comparison to Jupiter. In each simulation, however, the
planet triples were each endowed with a Jovian mass, and the evolution of the orbital dy-
namics was investigated over timescales ranging from 10-100 million years. This represented

21

an enormous computational effort, which was performed with a distributed parallel system.

In many cases, the model systems experienced severely unstable trajectories, leading to
collisions, ejections, and large orbital migration among the planets. Our main conclusion is
that planetary scattering from Jovian distances cannotl adequately account for the observed
distribution of orbits. Justin’s results convincingly indicated that it is difficult or impossible
to account for the observed aggregate of extrasolar planets with a scenario that involves
multiple planets on initially circular orbits which form beyond the so-called “snow line”
(located at about 5 astronomical units — the orbital radius of present-day Jupiter). Justin’s
results strongly suggest that the observed extrasolar planets either formed well inside the
snow-line, or underwent significant orbital migration before interacting dynamically.

His results are important because they show that the formation scenario for the known
extrasolar planets must have been qualitatively different from the formation scenario that
led to the solar system.

22

References

Arfken, George B. (1985). “Mathematical Methods for Physicists, ” second ed. Academic
Press, New York.

Challacombe, Matt, White, Chris, and Head-Gordon, Martin. (1997). Journal of Chemical
Physics 107.

Cheng, H., Greengard, L., and Rokhlin, V. (1999). Journal of Computational Physics.

Cormen, R., Leiserson, C., and Rivest, R. (1990). “Introduction to Algorithms.” MIT Press,
Cambridge, Massachusetts.

Lin, Kevin K. (2000). Simple Approach to O(p*) Scaling in the Fast Multipole Method.
Unpublished.

Pohorille, Andrew. Private communication.

White, Christopher A., and Head-Gordon, Martin. (1994). Journal of Chemical Physics
101.

White, Christopher A., and Head-Gordon, Martin. (1996). Journal of Chemical Physics
105.

23

